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Recently we reported on a novel feature associated with the intersection of the two lowest states 1A′ and 1A′′
of the methylamine (J. Chem. Phys. 2008, 128, 244302). We established the existence of a finite (closed) line
of conical intersections (ci), namely, a finite seam, located in the HC-NHH symmetry plane, a line that is
formed by moving a single hydrogen on that plane while locking the positions of the (six) other atoms. In the
present article, this study is extended to the corresponding torsion planes formed by rotating the methyl
group around the CN axis. The torsion planes, in contrast with the HC-NHH symmetry plane, do not satisfy
the symmetry feature that enables the seam just mentioned. Nevertheless, the calculated nonadiabatic coupling
terms (NACTs) resemble features similar to those encountered in the HC-NHH symmetry plane. Following
a tedious numerical study supported by a theoretical model (Section III), it was verified that these NACTs
may become similar to those on the symmetry plane, sometimes even to the level of almost no distinction,
but lack one basic feature; namely, they are not singular and therefore do not form topological effects.

I. Introduction

The study of the electronic nonadiabatic coupling terms
(NACTs) and Jahn-(Renner-)Teller intersections concentrated,
for the last two decades, mainly on small molecules, namely,
triatomic and tetra-atomic systems.1-15 Our approach, which is
based on ab initio treatments,1,4-6 was recently extended to larger
molecular systems, and among them we performed a detailed
study of the methylamine molecule, CH3NH2, consisting of
seven atoms.16a,b While saying that, we mention that there are
other kind of studies associated with Jahn-Teller intersections
for large molecular systems that are based on the so-called
vibronic coupling approach17 (and therefore avoid the NACTs).
The structure of the molecule is given in Figure 1, where it can
be seen that the methyl group, CH3, is separated from the amine
group, NH2, by the CN bond. This molecule has been an issue
of interest for a long time because it comprises two strongly
coupled large amplitude motions, specifically, the torsion of the
methyl top and the inversion of the amine group.18 Several
experimental studies provided evidence of the principal channel
for photodissociation in the first absorption band corresponding
to the N-H bond fission.19-23Very recently,22 it was shown that
in the vibrationally mediated photodissociation of CD3NH2,
about 90% of H and D observed products are hydrogen
photofragments released from the amine group, and the remain-
ing 10% are the deuterium released from the methyl group.

Early numerical treatments revealed cuts through the ab initio
potential energy surfaces for the ground, 1A′, and the first
excited, 1A′′, states of methylamine. In particular, it was pointed
out that the 1A′′ state potential that leads to the breakup of the
N-H bond is characterized by a small barrier (∼3000 cm-1) at
short range, which seems to be followed, at somewhat larger
bond extensions, by a conical intersection (ci) formed by the
above-mentioned states, both belonging to the Cs symmetry.24

This study, just like ours,16 was carried out for the nuclear
configuration where the five atoms HC-NHH form a plane that
is a plane of symmetry; therefore, the above-mentioned two
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Figure 1. Equilibrium structure of methylamine. Symmetric HC-NH2

plane. The coordinates θ1 and R1 show the position of the test hydrogen
(with respect to the nitrogen). These coordinates are varied during the
ci search. (The coordinates θ2 and R2 are held fixed during this process.)
The polar coordinates q and � show the position of the test hydrogen
with respect to an assumed point close to a possible ci point.
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states, 1A′ and 1A′′, are forced to have a different symmetry.
(The implication of this fact is discussed below.)

Our study based on the MOLPRO package25,26 revealed one
of the more interesting results, namely, that the two mentioned
states are coupled not by a single ci (or several ci’s) but by a
line of ci’s that is fully detected by moving the hydrogen in
one single plane, in this case, the plane of symmetry (See Figure
2). Continuous lines of ci’s are known as seams, but this one is
somewhat different. In all previous studies,1,4,6-8,10,15 the seams
were located by moving atoms at a series of planes where in
each plane is detected one (sometimes more than one) ci
point(s). The seams detected in this way are lines in configu-
ration space for which there is no reason to believe that they
are located in a single plane. In the present case, the atom we
chose, namely, an amine hydrogen, is constrained to move on
the HC-NHH plane only; nevertheless, a continuous line of
cis (a seam) fully located in that plane was revealed16 (See
Figure 2a,b). In what follows, we term this (amine) hydrogen
as a test particle (reminiscent of test particles to detect, e.g.,
electric fields).

This unusual situation is responsible for two additional
phenomena: (a) Along any (open) contour in the above plane

formed by the test particle that intersects this seam, a narrow,
spiky, NACT is formed (Figure 3) for which the area under it
is ∼π/2.16a,16b (b) It was shown, following a careful application
of MOLPRO,25 that the corresponding topological (Berry) phase
is zero. In a more recent publication16b is presented a model
that analyzes these findings.

In general, the existence of such a seam cannot be justified.
It is well known that for two states to form degeneracy at a
given point, two conditions have to be fulfilled, namely27

where Wij (i,j ) 1,2) represents the matrix elements of the
electronic Hamiltonian (also known as the diabatic potentials). For
a randomly selected plane, these conditions are at most satisfied at
isolated points. If, however, a study is carried out with respect to
a plane of symmetry and the two states are of different symmetries
(as indeed 1A′′ and 1A′ are), then condition II is satisfied trivially

Figure 2. Intraseam located on the symmetry plane and the intra-quasi-seam located on the torsion plane ϑ ) 30°. (The seam and the quasi-seam
overlap to the extent that they cannot be distinguished.) The curves presented are for a system of coordinates situated at the nitrogen (and calculated
for the case in which the second amine hydrogen is located at R2 ) 1.0 Å and θ2 ) 120°; Figure 1). The points on the curves indicate the position
of the centers of circular contours along which are calculated the NACTs (Figure 3) and the corresponding values of R(q|ϑ) and R̃(q|ϑ). (a)
Corresponding x-y plane (where x ) R1 cos(π - θ1) and y ) R1 sin(π - θ1)). (b) Plane including the other components of the molecule.

W11 - W22 ) 0 (I)

W12()W21) ) 0 (II)
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Figure 3. Angular NACTs (τ�) presented as a function of � for q ) 0.1 Å calculated at six different locations along the seam (as calculated on
the symmetry plane) and the quasi-seam (as calculated on the torsion plane). (See Figure 2.) The first column contains results related to the seam,
and the second column contains results related to the quasi-seam.
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by symmetry. As a result, we are left with only one requirement
as given by eq I, which can be fulfilled along a line in a 2D space,
namely, the above-mentioned plane. This phenomenon is exten-
sively discussed in ref 16.

In the present article, the two-state study is extended to torsion
planes, for which symmetry arguments are not valid anymore.
These planes are formed by rotating the methyl group around
the CN axis by a certain angle, ϑ. In what follows, such planes
will be assigned by the corresponding value of ϑ. Therefore,
one of the symmetry planes will be assigned as ϑ ) 0. It is
important to realize that in this system, five more symmetry
planes at torsion angles ϑ ) πn/3 [n ) 1,5] are encountered.
All other (torsion) planes are not planes of symmetry. The
torsion planes that deviate most from the symmetric planes are
those assigned by the torsion angles ϑ ) (2n + 1)π/6; n )
[0,5].

The main issue in the present article is to reveal the effects
of the symmetric ci lines on the corresponding NACTs on the
torsion planes. For this purpose, we compare NACTs obtained
for the symmetric plane (characterized as the plane ϑ ) 0) with
those calculated at the torsion plane characterized by ϑ ) π/6.

In the next section, we briefly describe the calculations and
discuss in detail the numerical results, namely, the NACTs and
the relevant topological phases. Section III presents a model
that explains the numerical findings, and in the last section we
discuss these findings and summarize the conclusions.

II. Numerical Treatment

Like in previous cases,4,6,16a the NACTs (and the adiabatic
hypersurfaces) are calculated at the state-average CASSCF level
using the 6-311G** basis set.26 We used the active space,
including two valence electrons distributed on five orbitals (three
of them belonging to the irreducible representation of A′). Three
electronic states were computed with equal weights. All seven
atoms were considered, but, as was mentioned earlier, the search
for ci’s is carried out by activating only one amine hydrogen.
We carried out the ab initio study by employing the MOLPRO
package.25

To follow the motion of the hydrogen, we use two (polar)
coordinates, the radial coordinate, q, and the angular coordinate,
�, defined for a system of coordinates located at some point
(R1,θ1) in the torsion plane. (See Figure 1.) The detection is
done by calculating the angular NACT, τ�12(�,q|ϑ,s), defined
as

Here �i(se|�,q,ϑ,s) (i ) 1,2) represents the two lowest electronic
(adiabatic) Born-Oppenheimer (BO) eigenfunctions,28 se stands
for the set of electronic coordinates, and s presents the group
of all nuclear coordinates excluding the two polar coordinates,
� and q, and the torsion angle, ϑ. Having defined the system
of coordinates, the search for ci’s on a given torsion plane is
done in the same way as that in the symmetric plane, namely,
calculating angular NACTs along small circular contours of
different radii. The next step is to derive the adiabatic-to-diabatic
transformation (ADT) angle (mixing angle), γ(�,q|ϑ).29 (See
also ref 1, chapter 3.1.)

Here and in what follows, the variable s is deleted.

In case of a closed contour, we get γ(� ) 2π,q|ϑ), namely

where R(q|ϑ) is identified as the corresponding topological
phase.30-33 It is important to emphasize that for situations where
the NACT is formed by two quasi-isolated states, it becomes
quantized,32a and, as a result, R(q|ϑ) becomes a multiple integer
of π or zero.4a,30-33

Comment. The NACT calculations could not really be carried
out on the symmetry plane itself because MOLPRO is not
capable of yielding results for such a situation. To overcome
this difficulty, we carried out the corresponding calculations for
a series of planes as close as possible to the symmetry plane.
The final results concerning the symmetry plane16 (and shown
also in the present article; Figure 3 and Table 1) were, in fact,
derived for one of these nearby planes and resemble, ap-
proximately, the situation on the symmetry plane.

Figure 3 presents the angular NACTs along 12 different
circles as a function of � with q ) 0.1 Å. (The coordinates of
the centers are specified in each panel.) Results for the
symmetric case are presented in the first column, and results
for the torsion case (at ϑ ) π/6) are presented in the second
column. The curves in the various panels are characterized by
two (spiky) peaks with opposite signs.16 (In particular, see ref
16b.) It is important to emphasize that the structure of the present
NACTs differs significantly from the other two-peak (angular)
NACTs, which are characterized by two positive maxima (along
a closed contour).4,8

It is important to emphasize that in all 12 (symmetric and
torsion) cases, the center of coordinates is at the nitrogen, the
polar axis is along the CN axis, and the second amine-hydrogen
is located at (R2,θ2) ) (1.0 Å, 120°). (See Figure 1.)

As in our previous study,16a the peaks of the various NACTs
encountered on the symmetry plane are applied to form the so-
called line of cis (namely, a continuous line that hosts the infinite
number of ci’s). The same procedure is also employed to form
the quasi-ci line on the plane ϑ ) π/6. In this stage, it is
important to emphasize that because the planes do not fulfill
any symmetry, the above-mentioned quasi-ci line is not a seam.
This issue is further discussed in Sections III and IV.

In Figure 2a are presented the two lines; however, they
overlap to the level that no distinction can be seen. Along
these lines are marked the positions of the various centers
of the circular contours mentioned earlier. Whereas in Figure
2a the two lines are presented in a somewhat arbitrary x-y
plane, more information is given in Figure 2b. In this Figure,
it is shown how the lines are related to other parts of the
molecule. For instance, it is noticed that the first center (on the
left-hand side) is closest to the methyl group and the last one is
the closest to the (second) amine hydrogen.

τ�12(�, q|ϑ, s) ) 〈�1(se|�, q,ϑ,s)|
∂

∂�
�2(se|�, q,ϑ,s)〉

(1)

γ(�, q|ϑ) ) ∫0

φ
d�′τ�(�′, q|ϑ) (2)

TABLE 1: ResultsAs Calculated for q ) 0.1 Å

locationa symmetrical

R1 θ1 R(q|ϑ ) 0) R̃(q|ϑ ) 0) R(q|ϑ ) 30) R̃(q|ϑ ) 30)

1.63 80 0.019 1.537 0.085 1.262
1.73 95 0.011 1.506 0.038 1.366
1.8 110 0.015 1.517 0.011 1.455
1.83 130 0.003 1.528 0.004 1.512
1.8 140 0.004 1.528 0.003 1.521
1.73 155 0.003 1.528 0.002 1.524

a For the meaning of these coordinates, see Figures 1 and 2.

γ(� ) 2π, q|ϑ) ) R(q|ϑ) ) ∫0

2π
d�′τ�(�′, q|ϑ) (3)
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In Table 1 are presented values of various line integrals. The
results in columns 3 and 5 are the topological phases, R(q|ϑ),
as obtained from eq 3, and the results in columns 4 and 6 stand
for the average values for the integral under each peak. (See
Figure 3.) These values are approximately given by the
expression

where R̃(q|ϑ) is defined as the intensity of the quasi-ci. R̃(q|ϑ)
is a new magnitude introduced as a measure related to the quasi-
seams. By definition, the topological phases due to quasi-ci’s
are zero because the contours do not surround a ci. This does
not mean that quasi-ci’s cannot affect the dynamics of the
interacting nuclei. The value of R̃(q|ϑ) is a measure of the ability
of such a quasi-ci to affect the dynamics. It is important to
realize that R̃(q|ϑ) for a real ci is always π/2, but for the quasi-
ci, it may attain smaller values. (The largest expected value for
R̃(q|ϑ) is π/2.)

The results in columns 3 and 4 refer to the plane of symmetry,
and those in columns 5 and 6 refer to the torsion plane. In
general, the values of R(q|ϑ) are ∼0, and the values of R̃(q|ϑ)
are ∼π/2 with one or two exceptions for the torsion case. In
this respect, we emphasize that in all previous cases (excluding
the ionic systems34a-c), the topological phases are (approxi-
mately) integer multiples of π (and not zero).

In a recent publication16b as well as in much earlier publica-
tions,34 models were introduced to explain the spiky structure
of the NACTs (as given in column 1 in Figure 3). In ref 16b,
we also proved that the peaks have to possess, in this situation,
alternating signs (which yield R(q|ϑ) ≈ 0).The issue of
alternating signs will not be considered here.

The next section is solely devoted to the meaning of the quasi-
seams on the torsion planes and in what way they differ from
the ordinary seam on the symmetry plane. This study will be
carried out by employing a model.

III. Model for Quasi-Seams on Torsion Planes

We start our presentation by reiterating the main difference
between the symmetry plane and the corresponding torsion
planes. Whereas the symmetry plane contains adiabatic states
that may become degenerate on that plane (in other words, a
degeneracy line (seam) is fully located in that plane), this cannot
happen with torsion planes. Torsion planes might be character-
ized by accidental degeneracy points but not by a whole line.
(See the discussion that follows eqs I and II.) In other words:
no planar seams can be found on a torsion plane.

Because no seams are found on torsion planes, we concentrate
on a different line, which is the planar intersection line between
the two corresponding diabatic states. Such lines may exist on
torsion planes whether or not the adiabatic states become
degenerate. This line is termed, accordingly, the quasi-seam.

Now, any planar line can be defined as p ) p(S) where p
and S are two orthogonal coordinates defined in that plane. In
what follows, S is the translational coordinate defined along the
line interval [-∞, e S e +∞], and p is the corresponding
orthogonal coordinate defined along a short interval (strip) in
the vicinity of the quasi-seam.

Next, we consider the two diabatic potentials, Wj(p,S|ϑ) (j )
1,2), and the corresponding difference, ∆W(p,S|ϑ)

Because the quasi-seam, p ) p(S), is defined as the intersection
line between the two diabatic potentials, its expression has to
be extracted from the equation

In general, the quasi-seam depends on ϑ; in other words, the
resulting line p ) p(S) may vary as a function of the torsion
angle, ϑ. However, while solving eq 6, we detected, at most, a
slight dependence of p ) p(S|ϑ) on ϑ. This means that the
various quasi-seams belonging to different torsion planes are
essentially identical, a fact that allows us to assume that they
all satisfy the same equation, namely, p ) p(S).

As mentioned earlier, we concentrate on a narrow strip that
contains the p ) p(S) line. Within this strip, we consider the
behavior of ∆W(p,S) (eq 5) and the ADT angle γ(p,S|ϑ) (eq 3),
which can be expressed in terms of the diabatic potentials, W1,
W2, and W12.34a

By expanding ∆W(p,S) in a Taylor series, we get the following
expression (recalling that the zero-order term is zero because
of eq 6)

To continue the treatment of γ(p,S|ϑ) in eq 7, we need to
refer explicitly to features of W12. First, we recall that because
of eq II, W12(p(S),S,ϑ) ≡ 0 on the symmetry plane, namely,
when ϑ ) 0. In what follows, we assume that in the vicinity of
the quasi-seam, W12 is independent p and depends only on S
(and ϑ). Combining the two features, we get

This assumption enables us to introduce a new variable, κ(S|ϑ),
defined as

Substituting eqs 8-10 into eq 7 yields for γ(p,S|ϑ) (following
the neglect of the second term in eq 8)

Differentiating γ(p,S|ϑ) with respect to p yields, τp, the
orthogonal component of the corresponding NACT

R̃(q|ϑ) ) 1
2 ∫0

2π
d�′|τ�(�′, q|ϑ)| (4)

∆W(p,S|ϑ) ) W2(p,S|ϑ) - W1(p,S|ϑ) (5)

∆W(p,S|ϑ) ) ∆W(p(S)|ϑ) ) 0 (6)

γ(p,S|ϑ) ) 1
4

π - 1
2

tan-1{∆W(p,S)/(2W12(p,S|ϑ))}

(7)

∆W(p,S) ) ∂(∆W(p,S))
∂p p(S)(p - p(S)) + O(p - p(S))2

(8)

W12(p,S|ϑ) ) {W12(S|ϑ); ϑ > 0
0; ϑ ) 0

(9)

κ(S|ϑ) ) 2W12(S|ϑ)[∂(∆W(p,S))
∂p |p(S)]-1

(10)

γ(p,S|ϑ) ) 1
4

π - 1
2

tan-1{(p - p(S)/κ(S|ϑ)} (11)

τp
(κ)(p, S|ϑ) ) 1

2
κ(S|ϑ)

κ(S|ϑ)2 + {p - p(S)}2
(12)
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Equation 12 indicates that as long as ϑ differs from zero
(namely, as long as the line is located on one of the torsion
planes), τp behaves like the Breit-Wigner function (because
κ(S|ϑ) differs from zero). The most that happens is that it
becomes spiky (in the vicinity of the quasi-seam) but never to
the extreme of being singular. To find out what happens on the
symmetry plane, we need to trigger a limiting process that allows
ϑ to approach zero. However, recalling eqs 9 and 10 and
allowing ϑ f 0 w κ f 0, when applied to eq 12, yields the
Dirac δ function at p ) p(S), and thus

Having the analytic expression for the orthogonal NACT in
the vicinity of the (real) seam on the symmetry plane yields,
along a finite value ∆p of the orthogonal coordinate, p, the
following value

This fact is well presented in Figure 3, where it can be seen
that the NACTs on the symmetry line are consistently spikier
than the corresponding NACTs located on the torsion planes.

To complete the presentation, we say that τp becomes singular
(described by a Dirac δ function16,34b) if and only if ϑ f 0,
namely, when reaching the symmetry plane.

IV. Discussion and Conclusions

The main conclusion of the model study is that the ci lines
on the symmetry plane possess topological effects (created by
the existence of the singularities) and that the corresponding
quasi-ci lines on the torsion planes do not possess this feature.
The question is if there exists numerical evidence to support
this conclusion?

To answer this question, we calculated angular NACTs along
contours located in planes slightly tilted away (by ∼10°) from
the above-mentioned symmetry plane and torsion plane. The
contours were chosen in such a way that they surround the seam
and the quasi-seam instead of intersecting them. The results are
presented in Figure 4a,b, respectively. The curves in both panels
clearly show a distinct form. Whereas the curve in Figure 4a is
positive along the whole angular interval (typical for a contour

that surrounds a single ci or line of ci’s), the curve in Figure 4b
is alternating (partially positive and partially negative) a typical
curve along a contour that does not surround any ci’s (or lines
of ci’s). Moreover, the corresponding line integral (eq 3) yields
the value 2.96 rad, which can be considered to be π for the
first case (where a ci is surrounded), and a small value (0.0025
rad) that is practically zero for the second case (where no ci is
surrounded). In other words, the NACTs in the first case formed
the relevant topological phase (R ≈ π) but failed to form it in
the second case; therefore, R ≈ 0. In summary, the conclusions
due to the model are in full agreement with the results of the
numerical treatment on the basis of the surrounding contours
in the tilted planes.

In this study is presented a phenomenon that to our knowledge
so far was not discussed in the literature, namely, the existence
of intra-quasi-seams associated with intraseams on a corre-
sponding symmetry plane formed by moving a single atom in
that plane. We found that although the two basic laws of
quantum chemistry, as stated in eqs I and II, do not permit the
existence of such intraseams on planes other than symmetry
planes (for which eq II is satisfied trivially), the numerical
treatment shows that intra-quasi-seams undoubtedly do exist on
the corresponding torsion planes. In other words, the molecular
systems found ways to surmount the quantum laws, as presented
in eqs I and II, by creating intra-quasi-seams.

In this respect, two comments have to be made: (1) As is
shown, quasi-seams are very similar to ordinary seams, but they
may possess weaker intensities. (See eq 4 for definition.) This
feature is well resembled when comparing results presented in
the first three rows of Table 1. (2) Quasi-seams are characterized
by the fact that W12 * 0, and this implies that the corresponding
adiabatic potentials, Vj(p,S|ϑ) (j ) 1,2), do not become degener-
ate along p ) p(S). In other words, no singular NACTs (other
than accidental, isolated ones) are to be found on torsion planes.
This fact implies that no topological effects can be created on
the torsion planes (except, eventually, because of isolated
degeneracy points).

It is true that these quasi-seams are not perfect; they might
be of weaker intensities and are not able to produce the
Longuet-Higgins sign flip,2,36 but as far their relevance to
dynamics is concerned, they seem to be as important as the
ordinary (singular) seams.
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41. (c) Köppel, H., p 175. (d) de Vivie-Riedle, R.; Hofmann, A., p 803.

(8) (a) Sadykov, R. G.; Yarkony, D. R. J. Chem. Phys. 1998, 109, 20.
(b) Yarkony, D. R. J. Chem. Phys. 2001, 114, 2614. (c) Han, S.; Yarkony,
D. R. J. Chem. Phys. 2003, 119, 5058. (d) Papas, B. N.; Schuurman, M. S.;
Yarkony, D. R. J. Chem. Phys. 2008, 124, 124104.

(9) Mead, C. A. J. Chem. Phys. 1983, 78, 807.
(10) (a) Godsi, P O.; Evenhuis, C. R.; Collins, M. J. Chem. Phys. 2006,

125, 164321. (b) Puzari, P.; Sarkar, B.; Adhikari, S. J. Chem. Phys. 2004,
121, 707. (c) Sarkar, B.; Adhikari, S. J. Chem. Phys. 2006, 124, 074101.
(d) Davidson, E. R. J. Am. Chem. Soc. 1977, 99, 397. (e) Kryachko, E. S.
AdV. Quantum Chem. 2003, 44, 119.

(11) (a) Barragan, P.; Errea, L. F.; Macias, A.; Mendez, L.; Riera, A.;
Lucas, J. M.; Aguilar, A. J. Chem. Phys. 2004, 121, 11629. (b) Sevryuk,
M. B.; Rusin, L. Y.; Cavalli, S.; Aquilanti, V. J. Phys. Chem. A 2004, 108,
8731. (c) Englman, R.; Vertesi, T. Phys. Lett. A 2006, 354, 196.

(12) (a) Amaran, S.; Kumar, S. J. Chem. Phys. 2008, 128, 154325. (b)
Amaran, S.; Kumar, S.; Koeppel, H. J. Chem. Phys. 2008, 128, 124305.
(c) Gomez-Carrasco, S.; Aquado, A.; Paniaqua, M.; Roncero, O. J. Chem.
Phys. 2006, 125, 104105.

(13) (a) Hu, C.; Hirai, H O.; Sugino, O. J. Chem. Phys. 2008, 128,
144111. (b) 2007, 127, 064103. (c) Romero, T.; Aguilar, A.; Gadea, F. X.
J. Chem. Phys. 1999, 110, 6219. (d) Takayanagi, T.; Kurasaki, Y.; Ichihara,
A. J. Chem. Phys. 2000, 112, 2615. (e) Takayanagi, T.; Kurasaki, Y.
J. Chem. Phys. 2000, 113, 7158.

(14) (a) Abrahamsson, E.; Groenenboom, G. C.; Krems, R. V. J. Chem.
Phys. 2007, 126, 184309. (b) Mozhayskiv, V. A.; Babikov, D.; Krylov,
A. I. J. Chem. Phys. 2006, 124, 224309. (c) Petrongolo, C.; Hirsch, G.;
Buenker, R. Mol. Phys. 1990, 70, 825. (d) 1990, 70, 835. (e) Hehareug-
Dao, D.; Chapuisat, X.; Lorquet, J. C.; Galloy, C.; Raseev, G. J. Chem.
Phys. 1983, 78, 1246. (f) Werner, H. J.; Follmeg, B.; Alexander, M. H.
J. Chem. Phys. 1980, 91, 5425. (g) Subotnik, J. E.; Yeganeh, S.; Cave,
R. J.; Ratner, M. A. J. Chem. Phys. 2008, 129, 244101.

(15) (a) Barbatti, M.; Belz, S.; Leibscher, M.; Lischka, H.; Manz, J.
Chem. Phys. 2008, 350, 145. (b) Rozgonyi, T.; Gonzalez, L. J. Phys. Chem.
A 2008, 112, 5573.

(16) (a) Levi, C.; Halász, G. J.; Vibók, Á.; Bar, I.; Zeiri, Y.; Kosloff,
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